www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Physik
  Status HochschulPhysik
  Status SchulPhysik
  Status Physik-Vorkurse
    Status VK 31: Physik Mittel
  Status Atom- und Kernphysik
  Status Elektrik
  Status Mechanik
  Status Optik
  Status Thermodynamik

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz
Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:36 Mi 02.03.2011
Autor: David90

Aufgabe
Überprüfen Sie die folgende Folgen auf Konvergenz. Bestimmen Sie für alle konvergenten Folgen den Grenzwert und zeigen Sie ggf. die Konvergenz gegen diesen Grenzwert. Sind die Folgen nicht konvergent, so geben Sie eine Begründung an.
[mm] \vec{c_{k}}= (\bruch{1}{\wurzel{k}},(-1)^k) [/mm]

Hi Leute, also meine Antwort sieht folgendermaßen aus: Meine Vermutung ist, dass die Folge divergent ist, weil die zweite Komponente divergiert. Voraussetzung für Konvergenz einer Folge ist, dass auch jede Komponente der Folge konvergent ist, was hier nicht der Fall ist. Reicht das als Begründung?:o
Gruß David

        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:43 Mi 02.03.2011
Autor: kamaleonti

Hi,
> Überprüfen Sie die folgende Folgen auf Konvergenz.
> Bestimmen Sie für alle konvergenten Folgen den Grenzwert
> und zeigen Sie ggf. die Konvergenz gegen diesen Grenzwert.
> Sind die Folgen nicht konvergent, so geben Sie eine
> Begründung an.
>  [mm]\vec{c_{k}}= (\bruch{1}{\wurzel{k}},(-1)^k)[/mm]
>  Hi Leute,
> also meine Antwort sieht folgendermaßen aus: Meine
> Vermutung ist, dass die Folge divergent ist, weil die
> zweite Komponente divergiert.

[ok]

> Voraussetzung für Konvergenz einer Folge ist, dass auch jede Komponente der Folge konvergent ist, was hier nicht der Fall ist. Reicht das als
> Begründung?:o

Ja, denn [mm] (-1)^k [/mm] ist nicht konvergent.

>  Gruß David

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.physikraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]